#P5344. 合并果子

合并果子

题目描述

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有3种果子,数目依次为1,2,9。可以先将 1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为 12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

输入格式

两行,第一行是一个整数n(1≤ n ≤ 30000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数a_i1a_i20000a\_i(1 ≤ a\_i ≤ 20000)是第i种果子的数目。

输出格式

一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2312^{31}

样例

3
1 2 9
15

提示

【样例2输入】

10

3 5 1 7 6 4 2 5 4 1

【样例2输出】

120