#P5192. 判断整除

判断整除

题目描述

一个给定的正整数序列,在每个数之前都插入++号或-号后计算它们的和。比如序列:1241、2、4共有88种可能的序列:

(+1) + (+2) + (+4) = 7

(+1) + (+2) + (-4) = -1

(+1) + (-2) + (+4) = 3

(+1) + (-2) + (-4) = -5

(-1) + (+2) + (+4) = 5

(-1) + (+2) + (-4) = -3

(-1) + (-2) + (+4) = 1

(-1) + (-2) + (-4) = -7

所有结果中至少有一个可被整数kk整除,我们则称此正整数序列可被kk整除。例如上述序列可以被3573、5、7整除,而不能被24682、4、6、8……整除。注意:03690、-3、-6、-9……都可以认为是33的倍数。

输入格式

输入的第一行包含两个数:N(2<N<10000)N(2<N<10000)k(2<k<100)k(2<k<100),其中NN代表一共有NN个数,kk代表被除数。第二行给出序列中的NN个整数,这些整数的取值范围都001000010000之间(可能重复)。

输出格式

如果此正整数序列可被kk整除,则输出YESYES,否则输出NONO

样例

3 2
1 2 4
NO