#P50245. 「CQOI2015」选数

「CQOI2015」选数

题目描述

我们知道,从区间 [L,H][L,H]LLHH 为整数)中选取 NN 个整数,总共有 (HL+1)N(H-L+1)^N 种方案。小 Z 很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的 NN 个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小 Z 会告诉你一个整数 KK,你需要回答他最大公约数刚好为 KK 的选取方案有多少个。由于方案数较大,你只需要输出其除以 10000000071000000007 的余数即可。

输入格式

输入一行,包含四个以空格分开的正整数,依次为 NNKKLLHH

输出格式

输出一个整数,为所求方案数。

样例

2 2 2 4
3

所有可能的选择方案:(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)

其中最大公约数等于 22 的只有三组:(2,2),(2,4),(4,2)(2, 2), (2, 4), (4, 2)

数据范围与提示

对于 100%100 \% 的数据,1N,K109, 1LH109, HL1051 \leq N,K \leq 10^9, \ 1 \leq L \leq H \leq 10^9, \ H-L \leq 10^5